Using a panel of reagents specific to the various subtypes of ABH antigens, it could be demonstrated that platelets carry ABH type 2 monofucosylated determinants on intrinsic glycoproteins. The presence of these antigens is controlled by the H gene and correlates with the presence of alpha-2-L-fucosyltransferase and the absence of alpha-3-L-fucosyltransferase. In contrast, intrinsic ABH antigens were not found on mononuclear cells, correlating with the absence of alpha-2-L-fucosyltransferase on these cells. However, after transformation with the Epstein-Barr virus and stimulation with 12-O-tetradecanoylphorbol-13-O-acetate (TPA), B lymphocytes were found to express the H antigen under control of the H gene and not the Se gene. The lymphoblastoid cell lines also expressed the X and sialylated X antigens which are normally markers of the myeloid lineage. These antigens are also normally found in epithelial cells of the digestive tract, kidney proximal convoluted tubules and hepatocytes. The alpha-3-L-fucosyltransferase responsible for the synthesis of this antigen is present in the serum but we report the existence of two individuals, a mother and her daughter, who lack more than 90% of this serum enzyme. The young girl suffers from a congenital kidney anomaly: oligomeganephronic hypoplasia. Her kidney tubules are devoid of X antigen. However, she and her mother have the X antigen on their granulocytes and its sialylated form on their monocytes. It therefore appears that there are distinct genetic controls for the expression of antigen X in different body compartments. This would be quite similar to the H and Se gene controls in tissues of distinct embryological origins.