Background: Evaluating structural damage using imaging is essential for the evaluation of small intestinal Crohn's disease (CD), but it is limited by potential interobserver variation. We compared the agreement of enterography-based bowel damage measurements collected by experienced radiologists and a semi-automated image analysis system.
Methods: Patients with small bowel CD undergoing a CT-enterography (CTE) between 2011 and 2017 in a tertiary care setting were retrospectively reviewed. CT-enterography studies were reviewed by 2 experienced radiologists and separately underwent automated computer image analysis using bowel measurement software. Measurements included maximum bowel wall thickness (BWT-max), maximum bowel dilation (DIL-max), minimum lumen diameter (LUM-min), and the presence of a stricture. Measurement correlation coefficients and paired t tests were used to compare individual operator measurements. Multivariate regression was used to model identification of strictures using semi-automated measures.
Results: In 138 studies, the correlation between radiologists and semi-automated measures were similar for BWT-max (r = 0.724, 0.702), DIL-max (r = 0.812, 0.748), and LUM-min (r = 0.428, 0.381), respectively. Mean absolute measurement difference between semi-automated and radiologist measures were no different from the mean difference between paired radiologists for BWT-max (1.26 mm vs 1.12 mm, P = 0.857), DIL-max (2.78 mm vs 2.67 mm, P = 0.557), and LUM-min (0.54 mm vs 0.41 mm, P = 0.596). Finally, models of radiologist-defined intestinal strictures using automatically acquired measurements had an accuracy of 87.6%.
Conclusion: Structural bowel damage measurements collected by semi-automated approaches are comparable to those of experienced radiologists. Radiomic measures of CD will become an important new data source powering clinical decision-making, patient-phenotyping, and assisting radiologists in reporting objective measures of disease status.
Keywords: CT enterography; MR enterography; computer-aided image analysis; intestinal fibrosis; radiomics; segmentation.
© 2019 Crohn’s & Colitis Foundation. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.