Comparison of antimicrobial resistance patterns in Streptococcus pneumoniae from respiratory and blood cultures in Canadian hospitals from 2007-16

J Antimicrob Chemother. 2019 Aug 1;74(Suppl 4):iv39-iv47. doi: 10.1093/jac/dkz286.

Abstract

Objectives: To compare the epidemiology and antimicrobial susceptibility patterns of Streptococcus pneumoniae collected from respiratory and blood culture samples in Canada between 2007 and 2016.

Methods: S. pneumoniae strains were obtained from Canadian hospitals as part of the ongoing national surveillance study, CANWARD. Isolates were serotyped using the Quellung method. Antimicrobial susceptibility testing was performed using the CLSI broth microdilution method. MDR and XDR were defined as resistance to three or more and five or more classes of antimicrobials, respectively.

Results: Of the 2581 S. pneumoniae isolates collected, 1685 (65.3%) and 896 (34.7%) were obtained from respiratory and blood samples, respectively. Respiratory isolates demonstrated lower rates of antimicrobial susceptibility than blood isolates to penicillin, ceftriaxone, clarithromycin, clindamycin, doxycycline and trimethoprim/sulfamethoxazole (P ≤ 0.03). From 2007 to 2016, invasive isolates demonstrated trends towards increasing penicillin susceptibility and decreasing clarithromycin susceptibility. MDR was significantly higher in respiratory S. pneumoniae compared with blood (9.1% versus 4.5%, P < 0.0001). Serotypes 11A, 16F, 19F, 23A/B/F, 34, 35B and non-typeable strains were more commonly isolated from respiratory specimens, while 4, 5, 7F, 8, 12F, 14 and 19A were more commonly invasive serotypes. Numerous serotypes, including 3 and 22F, were isolated frequently from both specimen sources.

Conclusions: S. pneumoniae from respiratory samples demonstrated lower antimicrobial susceptibilities and higher MDR in a greater diversity of serotypes than isolates obtained from blood. Many serotypes were associated with one specific specimen source, while others were associated with both; genetic characterization is necessary to elucidate the specific factors influencing the ability of these serotypes to commonly cause both invasive and non-invasive disease.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Anti-Bacterial Agents / pharmacology*
  • Bacteremia / epidemiology
  • Bacteremia / microbiology*
  • Blood Culture
  • Canada / epidemiology
  • Drug Resistance, Bacterial*
  • Female
  • Hospitals
  • Humans
  • Male
  • Microbial Sensitivity Tests
  • Middle Aged
  • Pneumococcal Infections / epidemiology
  • Pneumococcal Infections / microbiology*
  • Respiratory Tract Infections / epidemiology
  • Respiratory Tract Infections / microbiology*
  • Serogroup
  • Streptococcus pneumoniae / drug effects*
  • Streptococcus pneumoniae / immunology
  • Streptococcus pneumoniae / isolation & purification
  • Young Adult

Substances

  • Anti-Bacterial Agents