Induced pluripotent stem cells (iPSCs) have been applied to clinical regenerative cell therapy. Recently, an iPSC banking system to collect HLA haplotype (HP) homozygous (homo) cells for iPSC transplantation in allogeneic settings was proposed, and tissue transplantation generated from iPSC through banking has just began. We analyzed 5017 single cord blood transplantation (CBT) pairs with HLA-A, -B, -C, -DRB1 allele typing data and found 39 donor HLA homo donor to patient HLA heterozygous (hetero) pairs. Of note, all 39 HLA homo to hetero pairs engrafted neutrophils, except 1 early death pair, and all 30 assessable pairs engrafted platelets. Acute graft-versus-host disease (GVHD) grades II to IV and grades III to IV occurred in 17 and 3 of 38 assessable pairs, respectively. Competing risk regression analysis revealed a favorable risk of neutrophil engraftment and higher risk of acute GVHD compared with HLA-matched CBTs. Thirty-seven of 39 homo to hetero pairs had conserved extended HLA HPs (HP-1, n = 18; HP-2, n = 8; HP-3, n = 7; HP-4, n = 4; HP-5, n = 1) that were ethnicity-specific, and at least 1 of 2 patient HLA-A, -B, -C, and -DRB1 alleles in each locus were invariably shared with the same donor HP in 35 pairs. These findings confirmed our preliminary results with 6 HLA homo CBTs, and a trend of high incidence of acute GVHD was newly observed. Importantly, they imply the possibility that HLA-homo iPSC transplantation provides favorable engraftment and accordingly imply the merit of banking iPSC with homozygous major conserved extended HLA HPs.
Keywords: Cord blood transplantation; HLA haplotype; Induced pluripotent stem cell.
Copyright © 2019 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc. All rights reserved.