This study aimed to examine the distribution and contractile properties of single muscle fiber sex/myosin heavy chain (MHC) type-related differences and to evaluate the correlation of cross-sectional area (CSA) and specific force (SF) in a single muscle fiber. Six young men and six young women were participated in this study. Muscle sample was obtained from vastus lateralis muscle. To examine potential gender differences within each fiber contractile properties (CSA, maximal isometric force, SF, maximal shortening velocity) and relationship between CSA and SF of single fiber using Pearson correlation. After mechanical measurements, single muscle fiber determined MHC isoforms using silver stain. MHC isoform composition did not differ by sex (chi-square=6.978, P=0.073). There were sex-related differences in CSA and maximal isometric force (P<0.05), but no fiber type-related differences (P>0.05). Related to SF and maximal shortening velocity, there were no sex-related differences only fiber type-related differences (P<0.05). However, there were differences in SF between single fiber types in men but not in women. A negative correlation was found between CSA and SF in both men and women (P<0.05). It is suggested that there might be different mechanical properties of cross-bridges according to sex.
Keywords: Contractile properties; Myosin heavy chain; Sex; Single muscle fiber; Skeletal muscle.