Background: Killer-cell immunoglobulin-like receptors (KIRs) are a group of regulatory molecules able to activate or inhibit natural killer cells upon interaction with human leukocyte antigen (HLA) class I molecules. Combinations of KIR and HLA may contribute to the occurrence of different immunological and clinical responses to infectious diseases. Leprosy is a chronic neglected disease, both disabling and disfiguring, caused mainly by Mycobacterium leprae. In this case-control study, we examined the influence of KIRs and HLA ligands on the development of multibacillary leprosy.
Methodology/principal findings: Genotyping of KIR and HLA genes was performed in 264 multibacillary leprosy patients and 518 healthy unrelated controls (238 healthy household contacts and 280 healthy subjects). These are unprecedented results in which KIR2DL2/KIR2DL2/C1/C2 and KIR2DL3/2DL3/C1/C1 indicated a risk for developing lepromatous and borderline leprosy, respectively. Concerning to 3DL2/A3/A11+, our study demonstrated that independent of control group (contacts or healthy subjects), this KIR receptor and its ligand act as a risk factor for the borderline clinical form.
Conclusions/significance: Our finding suggests that synergetic associations of activating and inhibitory KIR genes may alter the balance between these receptors and thus interfere in the progression of multibacillary leprosy.