Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database

Eur J Hum Genet. 2020 Feb;28(2):165-173. doi: 10.1038/s41431-019-0508-0. Epub 2019 Sep 16.

Abstract

Rare diseases, an emerging global public health priority, require an evidence-based estimate of the global point prevalence to inform public policy. We used the publicly available epidemiological data in the Orphanet database to calculate such a prevalence estimate. Overall, Orphanet contains information on 6172 unique rare diseases; 71.9% of which are genetic and 69.9% which are exclusively pediatric onset. Global point prevalence was calculated using rare disease prevalence data for predefined geographic regions from the 'Orphanet Epidemiological file' (http://www.orphadata.org/cgi-bin/epidemio.html). Of the 5304 diseases defined by point prevalence, 84.5% of those analysed have a point prevalence of <1/1 000 000. However 77.3-80.7% of the population burden of rare diseases is attributable to the 4.2% (n = 149) diseases in the most common prevalence range (1-5 per 10 000). Consequently national definitions of 'Rare Diseases' (ranging from prevalence of 5 to 80 per 100 000) represent a variable number of rare disease patients despite sharing the majority of rare disease in their scope. Our analysis yields a conservative, evidence-based estimate for the population prevalence of rare diseases of 3.5-5.9%, which equates to 263-446 million persons affected globally at any point in time. This figure is derived from data from 67.6% of the prevalent rare diseases; using the European definition of 5 per 10 000; and excluding rare cancers, infectious diseases, and poisonings. Future registry research and the implementation of rare disease codification in healthcare systems will further refine the estimates.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Databases, Factual / statistics & numerical data
  • Genetic Diseases, Inborn / epidemiology*
  • Global Health / statistics & numerical data
  • Humans
  • Prevalence
  • Rare Diseases / epidemiology*