In cancer or hematologic disorders, chemokines act as growth- or survival factors, regulating hematopoiesis and angiogenesis, determining metastatic spread and controlling leukocyte infiltration into tumors to inhibit antitumor immune responses. The aim was to quantify the release of CXCL8, -9, -10, CCL2, -5, and IL-12 in AML/MDS-pts' serum by cytometric bead array and to correlate data with clinical subtypes and courses. Minimal differences in serum-levels subdivided into various groups (e.g. age groups, FAB-types, blast-proportions, cytogenetic-risk-groups) were seen, but higher release of CXCL8, -9, -10 and lower release of CCL2 and -5 tendentially correlated with more favorable subtypes (<50 years of age, <80% blasts in PB). Comparing different stages of the disease higher CCL5-release in persisting disease and a significantly higher CCL2-release at relapse were found compared to first diagnosis - pointing to a change of 'disease activity' on a chemokine level. Correlations with later on achieved response to immunotherapy and occurrence of GVHD were seen: Higher values of CXCL8, -9, -10 and CCL2 and lower CCL5-values correlated with achieved response to immunotherapy. Predictive cut-off-values were evaluated separating the groups in 'responders' and 'non-responders'. Higher levels of CCL2 and -5 but lower levels of CXCL8, -9, -10 correlated with occurrence of GVHD. We conclude, that in AML-pts' serum higher values of CXCL8, -9, -10 and lower values of CCL5 and in part of CCL2 correlate with more favorable subtypes and improved antitumor'-reactive function. This knowledge can contribute to develop immune-modifying strategies that promote antileukemic adaptive immune responses.
Keywords: Dendritic cells; T-cells; acute myeloid leukemia; chemokines; immunotherapy.