Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles

Nat Rev Drug Discov. 2019 Nov;18(11):845-867. doi: 10.1038/s41573-019-0043-2. Epub 2019 Sep 25.

Abstract

Nucleic acid sensors, primarily TLR and RLR family members, as well as cGAS-STING signalling, play a critical role in the preservation of cellular and organismal homeostasis. Accordingly, deregulated nucleic acid sensing contributes to the origin of a diverse range of disorders, including infectious diseases, as well as cardiovascular, autoimmune and neoplastic conditions. Accumulating evidence indicates that normalizing aberrant nucleic acid sensing can mediate robust therapeutic effects. However, targeting nucleic acid sensors with pharmacological agents, such as STING agonists, presents multiple obstacles, including drug-, target-, disease- and host-related issues. Here, we discuss preclinical and clinical data supporting the potential of this therapeutic paradigm and highlight key limitations and possible strategies to overcome them.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / therapeutic use*
  • Cancer Vaccines / therapeutic use*
  • Humans
  • Immunity, Innate / immunology*
  • Immunotherapy*
  • Neoplasms / immunology*
  • Neoplasms / prevention & control*
  • Nucleic Acids / immunology*
  • Signal Transduction

Substances

  • Antineoplastic Agents
  • Cancer Vaccines
  • Nucleic Acids