Functional group-rich hyperbranched magnetic material for simultaneous efficient removal of heavy metal ions from aqueous solution

J Hazard Mater. 2020 Feb 15:384:121288. doi: 10.1016/j.jhazmat.2019.121288. Epub 2019 Sep 23.

Abstract

In order to achieve the purpose of simultaneous removal of coexisting heavy metal ions, in this work, functionalized magnetic mesoprous nanomaterials (Fe3O4-HBPA-ASA) with high density and multiple adsorption sites were designed and prepared. The obtained Fe3O4-HBPA-ASA was characterized by SEM, FTIR, VSM, TGA and zeta potential. Cu(II), Pb(II) and Cd(II) were chosen as the model heavy metal ions, the adsorption experiments showed that Fe3O4-HBPA-ASA showed hightheoretical adsorption capacitiesin individual system, and the maximum adsorption capacity was 136.66 mg/g, 88.36 mg/g and 165.46 mg/g, respectively. In the binary and ternary systems, the competitive adsorption leads to a decrease in the adsorption capacity of Cu(II), Pb(II) and Cd(II). However, in the ternary system with a concentration lower than 15 mg/L, the simultaneous removal rate was still higher than 90%. The adsorption isotherms and kineticswere well fitted by Langmuir and pseudo-second-order models, respectively. The XPS and density functional theory (DFT) analysis have confirmed that the adsorption of metal ions was related to various types of functional groups on the surface of Fe3O4-HBPA-ASA, while the adsorption mechanisms of Cu(II), Cd(II) and Pb(II) were different.

Keywords: Competitive adsorption; Heavy metal ions; Magnetic mesoprous nanomaterials; Multiple adsorption sites; Simultaneous removal.

Publication types

  • Research Support, Non-U.S. Gov't