The water quality in drinking water source area is essential for human health. Due to rapid urbanization and industrialization, the pollutants, especially trace elements, are continuously discharged into aquatic environment and pose a risk to human health. An extensive investigation was carried out in drinking water source area in highly urbanized Tianjin of China. Long-term monitoring data of the water body was collected on conventional physical and chemical parameters (pH, ions, TOC etc.) and metallic elements (Hg, As Cd, Pb, Co, U etc.) from 2005 to 2017. Our results showed that CaMg-Cl-SO4 and CaMg-HCO3 were the two prominent hydrochemical materials, implying that the pollution of aquatic system was mainly caused by anthropogenic activities and mineral dissolution within terms of drinking water guidelines (national and international standards), the concentrations of arsenic (As) and iron (Fe) were beyond the quality standards. Multivariate statistical approaches were applied to assess the origins of the elements. The results showed that human activities, as well as endogenous release, contributed significantly to appearance of trace elements. A transformation from low-trophic state to high-trophic state was in progress from 2005 to 2017 in Yuqiao reservoir, and most of the water was not heavily polluted by trace elements. The health risk assessment suggested that As had the potential to cause carcinogenic harm to the local residents, with daily dietary ingestion as the most predominant pathway.
Keywords: Health risk; Physicochemical characteristics; Trace elements; Water quality; Water source area.
Copyright © 2019 Elsevier Inc. All rights reserved.