The role of temperature on the aerobic response of encapsulated embryos of Ocenebra erinaceus (Neogastropoda, Muricidae): A comparative study between two populations

Mar Environ Res. 2020 Jan:153:104815. doi: 10.1016/j.marenvres.2019.104815. Epub 2019 Oct 7.

Abstract

Climate warming can affect the developmental rate and embryonic survival of ectothermic species. However, it is largely unknown if the embryos of populations from different thermal regimes will respond differently to increased warming, potentially due to adaptations to natal environmental conditions. The effects of temperature on respiration rates and oxygen content of the intracapsular fluid were studied during the intracapsular development of Ocenebra erinaceus in two subtidal populations, one from the middle of their geographic distribution, the Solent, UK and another towards the southern portion: Arcachon, France. In this laboratory study, embryos were exposed to temperatures in the range of 14-20 °C. The encapsulation period for both populations was shorter at higher temperatures and intracapsular oxygen availability decreased as development progressed. However, the embryonic aerobic response differed between populations. Encapsulated embryos from the southern population (Arcachon) showed higher respiration rates and metabolic adjustment to elevated temperatures; however, encapsulated embryos from the Solent showed no metabolic adjustment, high capsular mortalities and limited acclimation to high temperatures. Our results suggest that aerobic response of encapsulated embryos is locally adapted to the temperature history of their natal environment and illustrates the importance of local environmental history in determining the fate of key life stages in response to a changing marine climate.

Keywords: Aerobic metabolism; Encapsulation; Intracapsular fluid; Local adaptation; Oxygen consumption; Temperature.