More random motor activity fluctuations predict incident frailty, disability, and mortality

Sci Transl Med. 2019 Oct 30;11(516):eaax1977. doi: 10.1126/scitranslmed.aax1977.

Abstract

Mobile healthcare increasingly relies on analytical tools that can extract meaningful information from ambulatory physiological recordings. We tested whether a nonlinear tool of fractal physiology could predict long-term health consequences in a large, elderly cohort. Fractal physiology is an emerging field that aims to study how fractal temporal structures in physiological fluctuations generated by complex physiological networks can provide important information about system adaptability. We assessed fractal temporal correlations in the spontaneous fluctuations of ambulatory motor activity of 1275 older participants at baseline, with a follow-up period of up to 13 years. We found that people with reduced temporal correlations (more random activity fluctuations) at baseline had increased risk of frailty, disability, and all-cause death during follow-up. Specifically, for 1-SD decrease in the temporal activity correlations of this studied cohort, the risk of frailty increased by 31%, the risk of disability increased by 15 to 25%, and the risk of death increased by 26%. These incidences occurred on average 4.7 years (frailty), 3 to 4.2 years (disability), and 5.8 years (death) after baseline. These observations were independent of age, sex, education, chronic health conditions, depressive symptoms, cognition, motor function, and total daily activity. The temporal structures in daily motor activity fluctuations may contain unique prognostic information regarding wellness and health in the elderly population.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Disability Evaluation*
  • Female
  • Fractals
  • Frailty / mortality*
  • Frailty / physiopathology*
  • Humans
  • Male
  • Motor Activity / physiology*
  • Proportional Hazards Models
  • Survival Analysis