CD4+ T cells play critical roles in directing immunity, both as T helper and as regulatory T (Treg) cells. Here, we demonstrate that hepatocytes can modulate T cell populations through engulfment of live CD4+ lymphocytes. We term this phenomenon enclysis to reflect the specific enclosure of CD4+ T cells in hepatocytes. Enclysis is selective for CD4+ but not CD8+ cells, independent of antigen-specific activation, and occurs in human hepatocytes in vitro, ex vivo, and in vivo. Intercellular adhesion molecule 1 (ICAM-1) facilitates T cell early adhesion and internalization, whereas hepatocytes form membrane lamellipodia or blebs to mediate engulfment. T cell internalization is unaffected by wortmannin and Rho kinase inhibition. Hepatocytes engulf Treg cells more efficiently than non-Treg cells, but Treg cell-containing vesicles preferentially acidify overnight. Thus, enclysis is a biological process with potential effects on immunomodulation and opens a new field for research to fully understand CD4+ T cell dynamics in liver inflammation.
Keywords: T cells; cell-in-cell structures; efferocytosis; emperipolesis; enclysis; endocytosis; entosis; hepatocytes; liver; β-catenin.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.