The modification of the surface radiation and energy balance in urban areas causes the temperatures in these areas to exceed those of the surrounding countryside. It has thus been suggested that urban environments may serve as field laboratories for studying the effects of a warming climate on biota in a space-for-time substitution. Here we investigated changes in the timing of plant phenology and temperature across study sites that differed in the degree of urbanization using publicly available pan-European datasets for the period 1981-2010. We found a significant advancement in the phenological phases of leaf development, flowering and fruiting with higher degrees of urbanization, whereas a significant delay was observed for phenological phases of leaf senescence. In addition to these phenological changes, an increase in air temperature with higher degrees of urbanization was observed. This increase was largest during the periods of leaf development, flowering and fruiting and smallest during the period of leaf senescence. On the basis of these results, we show that the apparent temperature sensitivity of phenological phases to urban warming is either significantly dampened (leaf development, flowering and fruiting) or reversed (leaf senescence) compared with the temperature sensitivity inferred from temporal changes in phenology and temperature. We conclude that gradients in urbanization represent a poor analogue for the temporal changes in plant phenology, apparently owing to confounding factors associated with urbanization.