Application of the superficially porous particles (SPPs) grafted with chiral selectors can substantially improve resolution in chromatographic techniques. In this work, we carried out a deeper study on supercritical fluid chromatography systems with 2.7 µm SPPs bonded with teicoplanin and vancomycin. Fast separations of the majority of enantiomers of phytoalexins, substituted tryptophans, and ketamine derivatives, as representatives of important biologically active and structurally diverse chiral compounds have been achieved. The chromatographic behavior of the structurally different analytes served to characterize these separation systems. The influence of separation conditions, namely mobile phase composition, i.e. type of co-solvent and additive on retention, enantioselective resolution and enantioselectivity was examined. The success rate of baseline and partial separations in individual groups of compounds differed with the chiral stationary phase and also with mobile phase composition. The best, baseline separations for the phytoalexins were achieved on the TeicoShell column using methanol as a co-solvent and trifluoroacetic acid as an additive if used. Mostly partial separations were achieved on the vancomycin-based column for all groups of analytes. Complementary separation behavior of these CSPs was confirmed for the majority of the chiral compounds examined in this work.
Keywords: Chiral stationary phase; Enantioseparation; Supercritical fluid chromatography; Superficially porous particles; Teicoplanin; Vancomycin.
Copyright © 2019. Published by Elsevier B.V.