Remobilization mechanism and release characteristics of phosphorus in saline sediments from the Pearl River Estuary (PRE), South China, based on high-resolution measurements

Sci Total Environ. 2020 Feb 10:703:134411. doi: 10.1016/j.scitotenv.2019.134411. Epub 2019 Sep 12.

Abstract

The internal loading of phosphorus (P) is commonly considered an essential factor contributing to eutrophication in freshwater bodies. However, investigation of the lability and remobilization characteristics of P in estuarine saline sediments has been limited. In this study, a sequential chemical extraction procedure and high-resolution measurement using the diffusive gradients in thin film (DGT) technique were employed to explore the lability, potential remobilization mechanism and release characteristics of sediment P in the Pearl River Estuary (PRE), South China. The P accumulated significantly in sediments along the west coast of the PRE due to the combined effects of terrestrial P inputs and specific hydrological conditions. The geochemical fractions of sediment P followed the order of organic P (Org-P) (mean: 58.6%) > iron-bound P (Fe-P) (23.4%) > calcium-bound P (Ca-P) (17.4%) > loosely bound P (LS-P) (0.63%). Synchronous vertical variations in DGT-labile Fe and P in the upper and middle parts of the sediment profiles confirmed that Fe-coupled P mobilization occurred in saline sediments. In contrast, sulfate reduction in bottom sediments supposed to decouple the Fe-P cycling relationship. Additionally, the formation of an "iron curtain" (Fe oxyhydroxides) in the oxic surface sediments efficiently prevented upward diffusion of P, leading to relatively low effluxes of P (0.098-6.59 ng cm-2 d-1) across the sediment-water interface.

Keywords: Decoupling of Fe-P cycling; Diffusion flux; Diffusive gradients in thin-films (DGT); Fe-coupled P mobilization; Pearl River Estuary (PRE).