This report presents a study on the determination of total polyphenols together with metals in several samples of olive oil produced in Spain. The results provided by applying a conventional extraction method were compared against those encountered by means of the so-called Dispersive Liquid-Liquid Aerosol Phase Extraction method. The novel method is based on the dispersion of the extracting solution in the sample. To accomplish this, an aerosol is pneumatically generated and directed against the surface of the oil sample. The aerosol was generated in order to increase as much as possible the surface area of the interface between the two involved non-miscible phases. As a result, the partition equilibrium was quickly achieved. The critical variables dictating the characteristics of the obtained aerosols as well as those influencing the partition equilibrium state were studied. With the aerosol phase extraction method, the values corresponding to the total polyphenols and metals in real samples were not statistically different as compared to those obtained by the conventional liquid - liquid extraction method. The new method provided shorter extraction times and lower mass of consumed reagents than the conventional one, thus giving rise to a more environmentally friendly method. For polyphenols, calculated limits of detection and quantification were 0.48 and 1.5 mg of gallic acid kg-1, respectively. The absorbance linearity, in turn, was kept from 0 to 50 mg kg-1 (R2 = 0.998). In the case of metal and metalloid quantification, the limits of detection found with a sample digestion method ranged from 1.3 (Cu) to 291 (Na) ng mL-1. Meanwhile, because of the lower dilution factor, this parameter was one order of magnitude lower when these elements were extracted according to the new method. The new extraction method was applied to the analysis of 42 extra virgin olive oils both bottled and directly collected from the oil press, containing single cultivars or blends and produced from different areas. Fresh oils were analyzed and a preliminary study on the oil thermal degradation was also done. Dispersing the extracting solution as an aerosol into the sample can be considered a versatile method able to provide extensive oil chemical information in a rapid way what is especially important in the case of polyphenols.
Keywords: Dispersive liquid-liquid aerosol phase extraction; Inductively coupled plasma mass spectrometry; Metalloids; Metals; Olive oil; Polyphenols.
Copyright © 2019 Elsevier B.V. All rights reserved.