Alpha-pyrrolidinovalerophenone (alpha-PVP), a novel psychoactive substance, has widespread recreational use. This with interest in its pharmacological effects creates a need for methods that measure alpha-PVP concentrations. We therefore developed a LC-MS/MS method that can quantitate alpha-PVP and 2-oxo-PVP in rat plasma using a 0.1-mL sample volume. Addition of internal standards (2.5 ng/mL alpha-PVP-d8/2-oxo-PVP-d6) was followed by liquid-liquid extraction with 1-chlorobutane:acetonitrile (4:1), evaporation and reconstitution with 0.1% formic acid. Extracts were analyzed by LC-MS/MS using an Agilent 1100 HPLC and a Thermo Scientific TSQ Quantum Access MS/MS, with a YMC ODS-AQ, 50 mm × 2 mm, 3 μm column. The mobile phase was 0.1% formic acid:acetonitrile gradient at a 0.2-mL/minute flow rate with positive ion electrospray. SRM was used for the analysis with transitions: alpha-PVP, 232 → 91; alpha-PVP-d8, 240 → 91; 2-oxo-PVP, 246 → 91; 2-oxo-PVP-d6, 252 → 91. Alpha-PVP and 2-oxo-PVP eluted at 6.4 and 8.9 min. Calibrators range from 0.25 to 500 ng/mL. Accuracy and precision evaluated quality control samples prepared at 0.75, 10 and 400 ng/mL. The intra-assay evaluation also included the 0.25-ng/mL LOQs prepared in six different blank plasma sources. The intra-assay accuracy ranged from 88.9 to 117.8% of the target, and the intra-assay precision ranged from 0.9 to 16.0%. The inter-assay accuracy ranged from 98.7 to 110.7% of the target, and the inter-assay precision ranged from 4.5 to 12.0%. Extraction recovery was at least 52% for alpha-PVP and 67% for 2-oxo-PVP. Ionization recoveries were at least 64% for alpha-PVP and 82% for 2-oxo-PVP. These losses did not adversely affect assay performance. Alpha-PVP and 2-oxo-PVP controls were stable at room temperature for up to 24 h and frozen for at least 36 days. Alpha-PVP and 2-oxo-PVP were also stable in processed samples (extracts) stored at room temperature for at least 24 days. The procedure was used to analyze rat plasma samples from a pharmacokinetic study.
© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.