Recent advances in remission induction treatment strategies for acute myeloid leukemia (AML) have improved the rates of complete remission (CR) and overall survival (OS), owing to a concerted effort to tailor therapies toward specific AML subtypes. However, without effective post-remission therapy, most patients will relapse. The extent to which post-remission therapies is individualized in the current paradigm is quite varied. Core binding factor (CBF) AML is typically treated with post-remission high-dose cytarabine (HiDAC) without allogeneic hematopoietic stem cell transplantation (HSCT), whereas those with intermediate or adverse-risk cytogenetics are treated with post-remission cytarabine followed by allogeneic HSCT in CR1 when feasible. A lack of clarity regarding the proper dosing of post-remission cytarabine has made consensus building on dosing and schedule a challenge. CBF AML benefits most from high-dose cytarabine (HiDAC), and dasatinib appears promising as an adjunct for those for KIT-mutated CBF AML. Other than series using CPX-351 or lomustine in older adults, multiagent chemotherapy approaches have resulted in excess toxicity without a survival benefit. Neither hypomethylating agents nor gemtuzumab ozogamicin have shown a material OS benefit. Targeted agents such as FLT3 inhibitors and IDH1/IDH2 inhibitors show potential for the patients who harbor these druggable targets, but few data are available. Many studies evaluating post-remission strategies to target AML in the MRD-positive state are already underway, and these remain a promising area of investigation.
Keywords: AML; Acute myeloid leukemia; CBF; Core binding factor; FLT3; HiDAC; High-dose cytarabine; IDAC; IDH1; IDH2; Intermediate-dose cytarabine; LDAC; Low-dose cytarabine; MRD; Measurable residual disease; Post-remission.
Copyright © 2019 Elsevier Ltd. All rights reserved.