In this study, the mechanism that VC inhibits lipid deposition through GSK-3β/mTOR signaling was investigated in the liver of Danio rerio. The results indicated that 0.5- and 1.0-g/kg VC treatments activated mTOR signaling by inhibiting GSK-3β expression. The mRNA expression of FAS, ACC, and ACL, as well as the content of TG, TC, and NEFA, was decreased by 0.5- and 1.0-g/kg VC treatments. Moreover, to confirm GSK-3β playing a key role in regulating TSC2 and mTOR, GSK-3β RNA was interfered and the activity of GSK-3β was inhibited by 25- and 50-mg/L LiCl treatments, respectively. The results indicated that GSK-3β inactivation played a significant role in inducing mTOR signaling and inhibiting lipid deposition. VC treatments could induce mTOR signaling by inhibiting GSK-3β, and mTOR further participated in regulating lipid deposition by controlling lipid profile in the liver of zebrafish.
Keywords: Danio rerio; GSK-3β; Lipid deposition; Liver; Vitamin C; mTOR.