There is a lot of debate in the literature with regards to whether the effects of working memory span training generalize to working memory tasks that are different from the trained task, however, there is little evidence to date supporting this idea. The present randomized controlled trial included 80 undergraduate students who were randomly assigned to either the experimental group (N = 40) or the control group (N = 40) in order to receive a working memory span intervention for 20 sessions over the course of 4 weeks. Brain electrophysiological signals during a dot pattern expectancy (DPX) task and a change detection task were recorded both before and after the intervention. The amplitudes of characteristic event-related potential (ERP) components reflecting working memory maintenance capability during the delay period of both tasks (i.e., the contingent negative variation or CNV, derived from the DPX task, and the contralateral delay activity or CDA, derived from the change detection task) were used as the primary outcome measures. Our data indicated that the intervention resulted in specific changes in both, the CNV and the CDA, suggesting that working memory span training generalized to working memory maintenance processes as observed in working memory tasks that were different from the trained task. We conclude that working memory span training might serve as a useful tool to improve working memory maintenance capability. Trial Registration: Chinese Clinical Trial Registry (chiCTR-INR-17011728).
Keywords: Contingent negative variation; Contralateral delay activity; Event-related potential; Randomized controlled trial; Working memory span.
Copyright © 2019 Elsevier Inc. All rights reserved.