Objective: We propose a strategy for identifying subgroups with the treatment effect from the survival data of a randomized clinical trial based on accelerated failure time (AFT) model.
Methods: We applied adaptive elastic net to the AFT model (designated as the penalized model) and identified the candidate covariates based on covariate-treatment interactions. To classify the patient subgroups, we utilized a likelihood-based change-point algorithm to determine the threshold cutoff point. A two-stage adaptive design was adopted to verify if the treatment effect existed within the identified subgroups.
Results: The penalized model with the main effect of the covariates considerably outperformed the univariate model without the main effect for the trial data with a small sample size, a high censoring rate, a small subgroup size, or a sample size that did not exceed the number of covariates; in other scenarios, the latter model showed better performances. Compared with the traditional design, the adaptive design improved the power for detecting the treatment effect where subgroup effect exists with a well-controlled type Ⅰ error.
Conclusions: The penalized AFT model with the main effect of the covariates has advantages in subgroup identification from the survival data of clinical trials. Compared with the traditional design, the two-stage adaptive design has better performance in evaluation of the treatment effect when a subgroup effect exists.
目的: 针对临床试验中的生存数据,基于加速失效时间模型提出一种亚组识别方法。
方法: 将Adaptive Elastic Net应用于加速失效时间模型(称为惩罚模型),通过检验协变量与治疗组别的交互项来识别亚组相关协变量。采用基于极大似然的change-point算法寻找预测计分的截断点以对患者进行亚组分类。采用二阶段适应性设计,以评价治疗效果是否存在于所识别的获益亚组人群中。对比四种模型(含协变量主效应的惩罚模型、单变量模型,以及不含协变量主效应的惩罚模型、单变量模型)的亚组识别效果。
结果: 模拟结果显示,在样本量较小、删失率较高、获益亚组占比较小以及样本量不超过协变量个数的情况下,含协变量主效应的惩罚模型在获益亚组的识别上有明显的优势;而其他情况下,则是不含主效应的单变量模型较优。在二阶段适应性设计中,这两种模型进行亚组识别的Ⅰ类错误均控制在0.05左右;当潜在获益亚组时,相比于传统设计,适应性设计很大程度上提高了检验效能。
结论: 含协变量主效应的惩罚模型适用于生存数据的亚组识别;相比于传统设计,二阶段适应性设计更适用于潜在获益亚组的疗效评价。
Keywords: accelerated failure time model; adaptive design; adaptive elastic net; change-point algorithm; precision medicine.