Disagreement regarding the cardioprotective role of superoxide dismutase may relate to the use of different durations for induction of ischemic injury and reperfusion. The present study employed superoxide dismutase conjugated to polyethylene glycol (PEG-SOD), which has a half-life greater than 30 hours. Two protocols differing in the mode of administration and the duration of the reperfusion interval were used. Dogs were subjected to occlusion of the circumflex coronary artery for 90 minutes, then reperfused for 6 hours (Protocol A) or 4 days (Protocol B). The dogs received either polyethylene glycol conjugated to albumin (PEG-ALB) or PEG-SOD (1,000 U/kg). In Protocol A, treatment was administered starting 15 minutes before coronary occlusion and continued for 2 hours, terminating 15 minutes after reperfusion. Infarct size was determined 6 hours later. In Protocol B, the conjugated proteins were given 15 minutes before reperfusion and ended simultaneously with reperfusion. Infarct size was measured after 4 days. Infarct size (percentage of area at risk) in control (n = 9) and treated (n = 9) dogs in Protocol A differed between groups: 46.7 +/- 3.5% versus 28.3 +/- 2.9%, respectively (p less than or equal to 0.005); risk regions did not differ: 42.8 +/- 1.5% versus 43.8 +/- 2.1%, respectively. Myocardial salvage also was observed in Protocol B. Infarct size in control (n = 13) and treated (n = 13) groups was 44.2 +/- 2.6% versus 29.2 +/- 1.6%, respectively (p less than or equal to 0.005), with risk regions being 44.4 +/- 1.4% versus 46.0 +/- 1.6% (p = NS). Hemodynamic variables did not differ during the period of coronary artery occlusion. The respective collateral blood flows to the inner two thirds of the ischemic myocardium determined 60 minutes after occlusion were 0.05 +/- 0.01 ml/min/g and 0.06 +/- 0.04 ml/min/g (p = 0.806) for the PEG-ALB and PEG-SOD treated groups, respectively. Infarct size was related inversely to collateral blood flow in the PEG-ALB treated group. This relation shifted downward (analysis of covariance, p = 0.017). Plasma SOD activity in Protocols A sustained for 6 hours. Significant enzymatic activity was present after 4 days in Protocol B. Previous negative studies with native SOD may be related to the short half-life of its free-radical scavenging capacity, which compromises the chances of observing a protective effect after 4 days of reperfusion. The present results support our previous observations, as well as those of other investigators, demonstrating that superoxide dismutase can reduce that component of myocardial injury associated with reperfusion.