Ultrafast laser diode thermal desorption method for analysis of representative pharmaceuticals in soil leachate samples

Talanta. 2020 Feb 1:208:120382. doi: 10.1016/j.talanta.2019.120382. Epub 2019 Sep 20.

Abstract

We developed and evaluated a novel analytical method combining ambient ionization technique - laser diode thermal desorption with chemical ionization (LDTD-APCI) and tandem mass spectrometry detection. The LDTD/APCI-MS/MS method was developed for determination of representative pharmaceuticals from different classes (carbamazepine, sulfamethoxazole, irbesartan, fexofenadine) in leachate samples from soil sorption experimentation. We then optimized laser pattern, laser energy and spiked sample volume, which are crucial parameters for this LDTD/APCI-MS/MS method. We further identified utility of a chelating agent (Na2-EDTA) to obtain the highest achievable and reproducible signal of target analytes. Achieved method performance parameters (LODs, LOQs, trueness and precision) were comparable with those obtained from LC-MS/MS. However, application of this novel LDTD/APCI-MS/MS method reduced analysis time by two orders of magnitude (to 12 s), compared to more conventional LC-MS/MS approaches, without use of organic solvents. We expect this novel method will reduce costs and increase throughput for future analyses of pharmaceuticals in the environment while advancing a timely principle of green chemistry.

Keywords: Ambient ionization; Analytical method comparison; Green chemistry; Laser diode thermal desorption; Pharmaceuticals; Soil sorption.