Reverberating effects of resource exchanges in stream-riparian food webs

Oecologia. 2020 Jan;192(1):179-189. doi: 10.1007/s00442-019-04574-y. Epub 2019 Dec 11.

Abstract

Fluxes of materials or organisms across ecological boundaries, often termed "resource subsidies," directly affect recipient food webs. Few studies have addressed how such direct responses in one ecosystem may, in turn, influence the fluxes of materials or organisms to other habitats or the potential for feedback relationships to occur among ecosystems. As part of a large-scale, multi-year experiment, we evaluated the hypothesis that the input of a marine-derived subsidy results in a complex array of resource exchanges (i.e., inputs, outputs, feedbacks) between stream and riparian ecosystems as responses disperse across ecological boundaries. Moreover, we evaluated how the physical properties of resource subsidies mediated complex responses by contrasting carcasses with a pelletized salmon treatment. We found that salmon carcasses altered stream-riparian food webs by directly subsidizing multiple aquatic and terrestrial organisms (e.g., benthic insect larvae, fishes, and terrestrial flies). Such responses further influenced food webs along indirect pathways, some of which spanned land and water (e.g., subsidized fishes reduced aquatic insect emergence, with consequences for spiders and bats). Subsidy-mediated feedbacks manifested when carcasses were removed to riparian habitats where they were colonized by carrion flies, some of which fell into the stream and acted as another prey subsidy for fishes. As the effects of salmon subsidies propagated through the stream-riparian food web, the sign of consumer responses was not always positive and appeared to be determined by the outcome of trophic interactions, such that localized trophic interactions within one ecosystem mediated the export of organisms to others.

Keywords: Allochthonous resource; Donor control; Indirect effect; Pacific salmon; Tetragnathidae.

MeSH terms

  • Animals
  • Ecology
  • Ecosystem
  • Food Chain*
  • Rivers
  • Spiders*