The number of colorectal cancer (CRC) patients is increasing worldwide. Accumulating evidence has shown that the tumor microenvironment (TME), including macrophages, neutrophils, and fibroblasts, plays an important role in the development and progression of CRC. Although targeting the TME could be a promising therapeutic approach, the mechanisms by which inflammatory cells promote CRC tumorigenesis are not well understood. When inflammation occurs in tissues, prostaglandin E2 (PGE2) is generated from arachidonic acid by the enzyme cyclooxygenase-2 (COX-2). PGE2 regulates multiple functions in various immune cells by binding to the downstream receptors EP1, EP2, EP3, and EP4, and plays an important role in the development of CRC. The current therapies targeting PGE2 using non-steroidal anti-inflammatory drugs (NSAIDs) or COX-2 inhibitors have failed due to the global prostanoid suppression resulting in the severe adverse effects despite the fact they could prevent tumorigenesis. Therefore, therapies targeting the specific downstream molecules of PGE2 signaling could be a promising approach. This review highlights the role of each EP receptor in the TME of CRC tumorigenesis and their therapeutic potential.
Keywords: PGE2/EP signaling; colorectal cancer; tumor microenvironment.