Mass spectrometry reveals the presence of specific set of epigenetic DNA modifications in the Norway spruce genome

Sci Rep. 2019 Dec 17;9(1):19314. doi: 10.1038/s41598-019-55826-z.

Abstract

5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene expression in metazoans and plants. Iron-(II)/α-ketoglutarate-dependent dioxygenases can oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Although these oxidized forms of 5mC may serve as demethylation intermediates or contribute to transcriptional regulation in animals and fungi, experimental evidence for their presence in plant genomes is ambiguous. Here, employing reversed-phase HPLC coupled with sensitive mass spectrometry, we demonstrated that, unlike 5caC, both 5hmC and 5fC are detectable in non-negligible quantities in the DNA of a conifer, Norway spruce. Remarkably, whereas 5hmC content of spruce DNA is approximately 100-fold lower relative to human colorectal carcinoma cells, the levels of both - 5fC and a thymine base modification, 5-hydroxymethyluracil, are comparable in these systems. We confirmed the presence of modified DNA bases by immunohistochemistry in Norway spruce buds based on peroxidase-conjugated antibodies and tyramide signal amplification. Our results reveal the presence of specific range of noncanonical DNA bases in conifer genomes implying potential roles for these modifications in plant development and homeostasis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 5-Methylcytosine / analogs & derivatives
  • 5-Methylcytosine / metabolism
  • Chromatography, High Pressure Liquid*
  • Cytosine / analogs & derivatives
  • Cytosine / metabolism
  • DNA Methylation / genetics
  • Epigenesis, Genetic / genetics*
  • Genome, Plant / genetics*
  • Mass Spectrometry
  • Norway
  • Picea / genetics*
  • Picea / metabolism

Substances

  • 5-carboxylcytosine
  • 5-formylcytosine
  • 5-hydroxymethylcytosine
  • 5-Methylcytosine
  • Cytosine