Focal epilepsy can be conceptualized as a network disorder, and the functional epileptic network can be described as a complex system of multiple brain areas that interact dynamically to generate epileptic activity. However, we still do not fully understand the functional architecture of epileptic networks. We studied a cohort of 21 patients with extratemporal focal epilepsy. We used independent component analysis of functional magnetic resonance imaging (fMRI) data. In order to identify the epilepsy-related components, we examined the general linear model-derived electroencephalography-fMRI (EEG-fMRI) time courses associated with interictal epileptic activity as intrinsic hemodynamic epileptic biomarkers. Independent component analysis revealed components related to the epileptic time courses in all 21 patients. Each epilepsy-related component described a network of spatially distributed brain areas that corresponded to the specific epileptic network in each patient. We also provided evidence for the interaction between the epileptic activity generated at the epileptic network and the physiological resting state networks. Our findings suggest that independent component analysis, guided by EEG-fMRI epileptic time courses, have the potential to define the functional architecture of the epileptic network in a noninvasive way. These data could be useful in planning invasive EEG electrode placement, guiding surgical resections, and more effective therapeutic interventions.
Keywords: cognitive impairments; epilepsy surgery; epileptic networks; focal epilepsy; functional MRI.
© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.