Capacitive and Sensing Responses of Biomass Derived Silver Decorated Graphene

Sci Rep. 2019 Dec 23;9(1):19725. doi: 10.1038/s41598-019-56178-4.

Abstract

A new, easy and green method is utilized for producing silver decorated graphene for its application in sensors and supercapacitors. The biomass-derived silver decorated graphene (AgGr) samples are prepared using an APCVD reactor with varying the process temperature from 600 to 800 °C. The as-synthesized AgGr samples were then characterized by AFM, SEM, Raman spectroscopy, FTIR spectroscopy, XRD, cyclic voltammetry and impedance spectroscopy. The interlayer spacing and ID/IG ratio of the AgGr samples varied from 3.6 to 3.7 Å and 0.87 to 1.52, respectively, as the process temperature was raised from 600 to 800 °C. The SEM image shows the distribution of the flower-like structure of Ag flakes in the graphene sheet for the AgGr-800 sample. Also, the greater number of active sites on the surface of AgGr-800 and the presence of a higher number of defects makes it least useful for p-nitrophenol sensing due to the excess opening of the CV curve but has a maximum capacitance of 93.5 Fg-1 in 1 M H2SO4. AgGr-600 showed extremely good sensing of p-nitrophenol than the other AgGr samples. Therefore this novel technique can be utilized for the large scale manufacture of various metal decorated graphene samples for their application in different fields.

Publication types

  • Research Support, Non-U.S. Gov't