A new, easy and green method is utilized for producing silver decorated graphene for its application in sensors and supercapacitors. The biomass-derived silver decorated graphene (AgGr) samples are prepared using an APCVD reactor with varying the process temperature from 600 to 800 °C. The as-synthesized AgGr samples were then characterized by AFM, SEM, Raman spectroscopy, FTIR spectroscopy, XRD, cyclic voltammetry and impedance spectroscopy. The interlayer spacing and ID/IG ratio of the AgGr samples varied from 3.6 to 3.7 Å and 0.87 to 1.52, respectively, as the process temperature was raised from 600 to 800 °C. The SEM image shows the distribution of the flower-like structure of Ag flakes in the graphene sheet for the AgGr-800 sample. Also, the greater number of active sites on the surface of AgGr-800 and the presence of a higher number of defects makes it least useful for p-nitrophenol sensing due to the excess opening of the CV curve but has a maximum capacitance of 93.5 Fg-1 in 1 M H2SO4. AgGr-600 showed extremely good sensing of p-nitrophenol than the other AgGr samples. Therefore this novel technique can be utilized for the large scale manufacture of various metal decorated graphene samples for their application in different fields.