In vitro demonstration of intestinal absorption mechanisms of different sugars using 3D organotypic tissues in a fluidic device

ALTEX. 2020;37(2):255-264. doi: 10.14573/altex.1908311. Epub 2019 Dec 30.

Abstract

Intestinal permeability is crucial in regulating the bioavailability and, consequently, the biological effects of drugs and compounds. However, systematic and quantitative studies of the absorption of molecules are quite limited due to a lack of reliable experimental models able to mimic human in vivo responses. In this work, we present an in vitro perfused model of the small intestinal barrier using a 3D reconstructed intestinal epithelium integrated into a fluid-dynamic biore­actor (MIVO®) resembling the physiological stimuli of the intestinal environment. This platform was investigated in both healthy and induced pathological conditions by monitoring the absorption of two non-metabolized sugars, lactulose and mannitol, frequently used as indicators of intestinal barrier dysfunctions. In healthy conditions, an in vivo-like plateau of the percentage of absorbed sugars was reached, where mannitol absorption was much greater than lactulose absorption. Moreover, a model of pathologically altered intestinal permeability was generated by depleting extracellular Ca2+, using a calcium-specific chelator. After calcium depletion, the pattern of sugar passage observed under pathological conditions was reversed only in dynamic conditions in the MIVO® chamber, due to the dynamic fluid flow beneath the membrane, but not in static conditions. Therefore, the combination of the MIVO® with the EpiIntestinal™ platform can rep­resent a reliable in vitro model to study the passage of molecules across the healthy or pathological small intestinal barrier by discriminating the two main mechanisms of intestinal absorption.

Keywords: 3D tissue models; In vitro models; fluid-dynamic tissue bioreactor; intestinal barrier; paracellular absorption; transcellular absorption.

MeSH terms

  • Animal Testing Alternatives*
  • Animals
  • Biological Transport
  • Intestines / physiology*
  • Lab-On-A-Chip Devices*
  • Models, Biological
  • Sugars / metabolism*

Substances

  • Sugars