Antiepileptic geissoschizine methyl ether is an inhibitor of multiple neuronal channels

Acta Pharmacol Sin. 2020 May;41(5):629-637. doi: 10.1038/s41401-019-0327-4. Epub 2020 Jan 7.

Abstract

Geissoschizine methyl ether (GM) is an indole alkaloid isolated from Uncaria rhynchophyll (UR) that has been used for the treatment of epilepsy in traditional Chinese medicine. An early study in a glutamate-induced mouse seizure model demonstrated that GM was one of the active ingredients of UR. In this study, electrophysiological technique was used to explore the mechanism underlying the antiepileptic activity of GM. We first showed that GM (1-30 μmol/L) dose-dependently suppressed the spontaneous firing and prolonged the action potential duration in cultured mouse and rat hippocampal neurons. Given the pivotal roles of ion channels in regulating neuronal excitability, we then examined the effects of GM on both voltage-gated and ligand-gated channels in rat hippocampal neurons. We found that GM is an inhibitor of multiple neuronal channels: GM potently inhibited the voltage-gated sodium (NaV), calcium (CaV), and delayed rectifier potassium (IK) currents, and the ligand-gated nicotinic acetylcholine (nACh) currents with IC50 values in the range of 1.3-13.3 μmol/L. In contrast, GM had little effect on the voltage-gated transient outward potassium currents (IA) and four types of ligand-gated channels (γ-amino butyric acid (GABA), N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainite (AMPA/KA receptors)). The in vivo antiepileptic activity of GM was validated in two electricity-induced seizure models. In the maximal electroshock (MES)-induced mouse seizure model, oral administration of GM (50-100 mg/kg) dose-dependently suppressed generalized tonic-clonic seizures. In 6-Hz-induced mouse seizure model, oral administration of GM (100 mg/kg) reduced treatment-resistant seizures. Thus, we conclude that GM is a promising antiepileptic candidate that inhibits multiple neuronal channels.

Keywords: Uncaria rhynchophyll; action potential; antiepileptic drug; geissoschizine methyl ether; hippocampal neurons; mouse seizure model; nicotinic acetylcholine receptors; voltage-gated ion channels.

MeSH terms

  • Animals
  • Anticonvulsants / pharmacology*
  • Calcium Channels
  • Disease Models, Animal
  • Electroshock
  • Hippocampus / drug effects*
  • Indole Alkaloids / pharmacology*
  • Ion Channel Gating / drug effects*
  • Ion Channel Gating / genetics
  • Male
  • Mice
  • Mice, Inbred Strains
  • Neurons / drug effects*
  • Rats
  • Rats, Sprague-Dawley
  • Seizures / drug therapy*

Substances

  • Anticonvulsants
  • Calcium Channels
  • Indole Alkaloids
  • geissoschizine methylether