Dissociated neuronal phase- and amplitude-coupling patterns in the human brain

Neuroimage. 2020 Apr 1:209:116538. doi: 10.1016/j.neuroimage.2020.116538. Epub 2020 Jan 11.

Abstract

Coupling of neuronal oscillations may reflect and facilitate the communication between neuronal populations. Two primary neuronal coupling modes have been described: phase-coupling and amplitude-coupling. Theoretically, both coupling modes are independent, but so far, their neuronal relationship remains unclear. Here, we combined MEG, source-reconstruction and simulations to systematically compare cortical amplitude-coupling and phase-coupling patterns in the human brain. Importantly, we took into account a critical bias of amplitude-coupling measures due to phase-coupling. We found differences between both coupling modes across a broad frequency range and most of the cortex. Furthermore, by combining empirical measurements and simulations we ruled out that these results were caused by methodological biases, but instead reflected genuine neuronal amplitude coupling. Our results show that cortical phase- and amplitude-coupling patterns are non-redundant, which may reflect at least partly distinct neuronal mechanisms. Furthermore, our findings highlight and clarify the compound nature of amplitude coupling measures.

Keywords: Amplitude-coupling; Attenuation correction; Functional connectivity; Human connectome project; MEG; Neuronal oscillations; Phase-coupling; Synchrony.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain Waves / physiology*
  • Connectome / methods*
  • Cortical Synchronization / physiology*
  • Female
  • Humans
  • Magnetoencephalography / methods*
  • Male
  • Middle Aged
  • Young Adult