The pursuit of early diagnosis of cerebral palsy has been an active research area with some very promising results using tools such as the General Movements Assessment (GMA). In this paper, we conducted a pilot study on extracting important information from video sequences to classify the body movement into two categories, normal and abnormal, and compared the results provided by an independent expert reviewer based on GMA. We present two new pose-based features, Histograms of Joint Orientation 2D (HOJO2D) and Histograms of Joint Displacement 2D (HOJD2D), for the pose-based analysis and classification of infant body movement from video footage. We extract the 2D skeletal joint locations from 2D RGB images using Cao et al.'s method [1]. Using the MINI-RGBD dataset [2], we further segment the body into local regions to extract part specific features. As a result, the pose and the degree of displacement are represented by histograms of normalised data. To demonstrate the effectiveness of the proposed features, we trained several classifiers using combinations of HOJO2D and HOJD2D features and conducted a series of experiments to classify the body movement into categories. The classification algorithms used included k-Nearest Neighbour (kNN, k=1 and k=3), Linear Discriminant Analysis (LDA) and the Ensemble classifier. Encouraging results were attained, with high accuracy (91.67%) obtained using the Ensemble classifier.