Kinsa Inc. sells Food and Drug Administration-cleared smart thermometers, which synchronize with a mobile application, and may aid influenza forecasting efforts. We compare smart thermometer and mobile application data to regional influenza and influenza-like illness surveillance data from the California Department of Public Health. We evaluated the correlation between the regional California surveillance data and smart thermometer data, tested the hypothesis that smart thermometer readings and symptom reports provide regionally specific predictions, and determined whether smart thermometer and mobile application improved disease forecasts. Smart thermometer readings are highly correlated with regional surveillance data, are more predictive of surveillance data for their own region and season than for other times and places, and improve predictions of influenza, but not predictions of influenza-like illness. These results are consistent with the hypothesis that smart thermometer readings and symptom reports reflect underlying disease transmission in California. Data from such cloud-based devices could supplement syndromic influenza surveillance data.
Keywords: crowdsourced data; disease surveillance; forecasting; influenza; influenza-like illness.