Efficient and Versatile Model for Vibrational STEM-EELS

Phys Rev Lett. 2020 Jan 17;124(2):025501. doi: 10.1103/PhysRevLett.124.025501.

Abstract

We introduce a novel method for the simulation of the impact scattering in vibrational scanning transmission electron microscopy electron energy loss spectroscopy simulations. The phonon-loss process is modeled by a combination of molecular dynamics and elastic multislice calculations within a modified frozen phonon approximation. The key idea is thereby to use a so-called δ thermostat in the classical molecular dynamics simulation to generate frequency dependent configurations of the vibrating specimen's atomic structure. The method includes correlated motion of atoms and provides vibrational spectrum images at a cost comparable to standard frozen phonon calculations. We demonstrate good agreement of our method with simulations and experiments for a 15 nm flake of hexagonal boron nitride.