The antimalarial drug Artemisinin has been reported to possess direct anti-tumor effects on various types of tumor cells. However, its anti-tumor potential has not been fully revealed, and its effects on tumor susceptibility to immune surveillance by the host are still unknown. Natural killer (NK) cells are the first line in tumor surveillance by the host, and have been recognized as a promising target for tumor immunotherapy. Here, we reported that Artemisinin sensitized tumor cells to NK cell cytolysis. Both human K562 and Raji tumor cells, and mouse YAC-1 tumor cells were more susceptible to human or mouse NK cell cytolysis in vitro after Artemisinin pretreatment. Conjugation formation between tumor cells and NK cells was increased after pretreatment with Artemisinin. Such effects on tumor cells by Artemisinin might not be the results of tumor recognition by NK cells, since major ligands of NK cell surface receptors were not affected. Mechanistically, although Artemisinin didn't induce tumor cell apoptosis, Artemisinin enriched apoptosis-related gene sets in these tumor cells, which might predispose tumor cells to apoptosis upon NK cell cytolysis. Moreover, NK cell numbers, percentages, maturation and functions were preserved in the presence of Artemisinin in vitro, suggesting that Artemisinin displays detrimental effects only on tumor cells but not on immune cells. These data reveal a novel anti-tumor mechanism of Artemisinin and demonstrate that Artemisinin could be a promising drug candidate for cancer treatment.
Keywords: Anti-malaria; Natural killer cells; Tumor immunology.
Copyright © 2020 Elsevier Inc. All rights reserved.