Structural and Spectroscopic Investigation of Two Plutonium Mellitates

Inorg Chem. 2020 Mar 2;59(5):3085-3090. doi: 10.1021/acs.inorgchem.9b03432. Epub 2020 Feb 10.

Abstract

The aqueous reaction of mellitic acid (H6mell) with 242PuBr3·nH2O forms two plutonium mellitates, 242Pu2(mell)(H2O)9·H2O (Pu-1α) and 242Pu2(mell)(H2O)8·2H2O (Pu-1β). These compounds are compared to the isomorphous lanthanide mellitates with similar ionic radii via bond length analysis. Both plutonium compounds form three-dimensional metal-organic frameworks, with Pu-1α having two unique metal centers and Pu-1β having one. All plutonium metal centers exhibit nine-coordinate geometries. Our results show metal-oxygen bond lengths for plutonium significantly shorter than those of the previously reported lanthanum and herein reported cerium analogues, consistent with the nine-coordinate ionic radii. Clear Laporte-forbidden 5f → 5f transitions are observed in the ultraviolet-visible-near-infrared spectra and are assigned to trivalent plutonium. However, there is a distinct color difference between the two plutonium compounds.