Present study was undertaken on buck spermatozoa to investigate the effect of mercuric chloride on functional dynamics of buck spermatozoa. Four different concentrations (0.031, 0.125, 0.25 and 1.25 μg/mL) of mercuric chloride, which were 1/40th, 1/10th, 1/5th and equivalent to the LC50 value of HgCl2, were selected for studying their effect following in vitro exposure for 15 min and 3 h. Exposure of spermatozoa to 0.031 μg/mL mercuric chloride for 3 h resulted in significant (p < 0.05) decrease in sperm motility, sperm having intact membrane, intact acrosome and high mitochondrial trans-membrane potential. However, following exposure to higher concentrations (0.25, 1.25 μg/mL), similar results were observed even after 15 min of exposure. HgCl2 significantly (p < 0.05) increased the levels of malondialdehyde and reactive oxygen species and significantly (p < 0.05) decreased total antioxidant capacity and superoxide dismutase activity in spermatozoa within 15 min of exposure. Mercuric chloride-treated spermatozoa did not show capacitation, rather exhibited spontaneous acrosome reaction along with significant increase in intracellular Ca2+ and cAMP levels. Immuno-blotting of semen samples of control and 0.031 μg/mL mercury-treated groups showed low intensity bands of p55, p70, p80, p105 and p190 kDa tyrosine phosphorylation proteins while higher concentration-treated groups showed no such bands. Our findings evidently suggest that mercuric chloride even at 0.031 μg/mL adversely affected sperm functions, inhibited tyrosine phosphorylation proteins and capacitation due to oxidative stress. Spontaneous acrosome reaction (AR) in mercury-treated spermatozoa may possibly be due to increase in intracellular Ca2+ and cAMP levels, and capacitation failure may be due to inhibition of tyrosine phosphorylation of proteins.
Keywords: Buck spermatozoa; Functional dynamics; Intracellular calcium; Mercury; Tyrosine phosphorylation.