Background: Higher levels of uric acid production have been reported in individuals with visceral fat obesity, and obesity is known to enhance xanthine oxidoreductase (XOR) activity, although the precise mechanism remains unclear. We investigated the associations of visceral fat area (VFA), serum adiponectin level, and insulin resistance with plasma XOR activity using our novel highly sensitive assay based on [13C2,15N2] xanthine and liquid chromatography/triple quadrupole mass spectrometry.
Methods: This cross-sectional study included 193 subjects (92 males and 101 females) registered in the MedCity21 health examination registry. Plasma XOR activity, serum adiponectin level, and VFA obtained by computed tomography were measured, and insulin resistance was determined based on the homeostasis model assessment (HOMA-IR) index.
Results: The mean values for VFA, log HOMA-IR, and log plasma XOR activity were 76.8 ± 45.8 cm2, 0.14 ± 0.30, and 1.50 ± 0.44 pmol/h/mL, respectively. Multiple regression analysis showed that HOMA-IR was significantly (p=0.020) associated with plasma XOR activity independent of other factors, including VFA and adiponectin level, as well as age, sex, alcohol drinking habit, smoking habit, alanine transaminase, HbA1c, and eGFR. The "sex∗HOMA - IR" interaction was not significant (p=0.020) associated with plasma XOR activity independent of other factors, including VFA and adiponectin level, as well as age, sex, alcohol drinking habit, smoking habit, alanine transaminase, HbA1c, and eGFR. The ".
Conclusions: Our results indicate that insulin resistance is associated with plasma XOR activity and that relationship is independent of visceral adiposity and adiponectin level, suggesting that the development of insulin resistance resulting from increased visceral adiposity and/or reduced serum adiponectin contributes to increased uric acid production by stimulating XOR activity.
Copyright © 2019 Masafumi Kurajoh et al.