Anionic polymerization techniques were employed for the synthesis of linear polystyrene (PS) and block copolymer of PS and polyisoprene (PI) PS-b-PI bearing end hydroxyl groups. Following suitable organic chemistry transformation, the -OH end groups were converted to moieties able to form complementary hydrogen bonds including 2,6-diaminopurine, Dap, thymine, Thy, and the so-called Hamilton receptor, Ham. The formation of hydrogen bonds was examined between the polymers PS-Dap and PS-b-PI-Thy, along with the polymers PS-Ham and PS-b-PI-Thy. The conditions under which supramolecular triblock copolymers are formed and the possibility to form aggregates were examined both in solution and in the solid state using a variety of techniques such as 1H-NMR spectroscopy, size exclusion chromatography (SEC), dilute solution viscometry, dynamic light scattering (DLS), thermogravimetric analysis (TGA), differential thermogravimetry (DTG), and differential scanning calorimetry (DSC).
Keywords: anionic polymerization; hydrogen bonds; self-assembly; solution properties; supramolecular chemistry; thermal properties.