Morphogenesis is an essential process by which a given tissue, organ or organism acquires its final shape. A select number of mechanisms are used in order to drive epithelial morphogenesis, including cell shape changes as well as cell death or cell division. A cell's shape results from the combination of intrinsic properties of the actomyosin and microtubule (MTs) cytoskeletons, and extrinsic properties due to physical interactions with the neighbouring environment. While we now have a good understanding of the genetic pathways and some of the signalling pathways controlling cell shape changes, the mechanical properties of cells and their role in morphogenesis remain largely unexplored. Recent improvements in microscopy techniques and the development of modelling and quantitative methods have enabled a better understanding of the bio-mechanical events controlling cell shape during morphogenesis. This review aims to highlight recent findings elegantly unravelling and quantifying the contribution of mechanical forces during morphogenesis.
Copyright © 2020 Elsevier Ltd. All rights reserved.