Topological aspects of electronic structures have received intensive research interest in recent years. Here, we systematically investigate the electronic structure, doping effect and topological signature in a family of realistic compounds Li3-xNaxM (x = 3, 2, 1, 0; M = N, P, As, Sb, Bi). Without considering SOC, their electronic band structures show a doubly degenerate nodal line (NL) near the Fermi level in the Γ-A path. In addition, some compounds including Li2NaN, LiNa2N, Na3N and Na3Bi also exhibit one (or two) pair(s) of triply-degenerate nodal points (TDNPs) in the Γ-A path, locating at both sides of the Γ point. When SOC is taken into account, the band degeneracy of the NLs splits, and the scale of band splitting follows a positive correlation with the atomic weight of the M elements. Due to the band splitting by SOC, most of the Li3-xNaxM compounds show a pair of Dirac points (DPs) near the Fermi level. Very interestingly, we find that these DPs possess different types of band dispersions, namely type-I, type-II and the critical-type. The Fermi arcs from the DPs are identified. Our results indicate that Li3-xNaxM compounds are good candidates to study the novel properties of NLs, TDNPs, and DPs with different slopes of band dispersions.