Gold nanoparticles are widely used for biomedical applications owing to their biocompatibility, ease of functionalization and relatively non-toxic nature. In recent years, biogenic nanoparticles have gained attention as an eco-friendly alternative for a variety of applications. In this report, we have synthesized and characterized gold nanoparticles (AuNPs) from an Actinomycete, Nocardiopsis dassonvillei NCIM 5124. The conditions for biosynthesis were optimized (100 mg/ml of cell biomass, 2.5 mM tetrachloroauric acid (HAuCl4) at 80 °C and incubation time of 25 min) and the nanoparticles were characterized by TEM, SAED, EDS and XRD analysis. The nanoparticles were spherical and ranged in size from 10 to 25 nm. Their interactions with human gingival tissue-derived mesenchymal stem cells (GMSCs) and their potential applications in regenerative medicine were evaluated further. The AuNPs did not display cytotoxicity towards GMSCs when assessed by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay, DNA fragmentation patterns and Annexin V/propidium iodide staining techniques. These AuNPs induced faster cell migration when monitored by the in vitro wound healing assay. The effect of these nanoparticles on osteogenesis of GMSCs was also studied. Based on the results obtained from alkaline phosphatase, Von Kossa staining and Alizarin Red S staining, the AuNPs were seen to positively affect differentiation of GMSCs and enhance mineralization of the synthesized matrix. We therefore conclude that the biogenic, non-toxic AuNPs are of potential relevance for tissue regeneration applications.
Keywords: Biosynthesis; Gingiva; Gold nanoparticles; Mesenchymal stem cells; Nocardiopsis dassonvillei NCIM 5124; Osteogenesis.