Rheumatoid arthritis (RA) is a chronic inflammatory and systemic autoimmune disease with an unknown aetiology. Accumulative studies suggest that the pathogenesis of RA involves the excessive activation of synoviocytes and immune cells, increasing the secretion of inflammatory mediators and cytokines in synoviocytes, causing dysfunctional E-prostanoid (EP)-G-protein-cyclic adenosine monophosphate (cAMP) and mitogen-associated-protein kinase (MAPK) signalling in synoviocytes. Total glucosides of paeony (TGP) extracted from the roots of Paeonia lactiflora Pall, was approved by the China Food and Drug Administration as an anti-inflammatory and immuno-modulator drug in 1998. Paeoniflorin (Pae), a water-soluble monoterpene glucoside,is the main effective component of TGP. TGP and Pae produce anti-inflammatory and immuno-regulatory effects by suppressing immune cells and synoviocytes activation, decreasing inflammatory substance production and restoring abnormal signalling in synoviocytes. In this review, the regulation of the inflammatory-immune responses and the therapeutic mechanism between RA and TGP and Pae are discussed in detail. The aim of this review was to provide novel insights into the treatment of RA.