Metabolic syndrome (MetS) profoundly changes the contents of mesenchymal stem cells and mesenchymal stem cells-derived extracellular vesicles (EVs). The anti-inflammatory TGF-β (transforming growth factor-β) is selectively enriched in EVs from Lean but not from MetS pigs, but the functional impact of this endowment remains unknown. We hypothesized that Lean-EVs more effectively induce regulatory T cells in injured kidneys. Five groups of pigs (n=7 each) were studied after 16 weeks of diet-induced MetS and unilateral renal artery stenosis (RAS; MetS+RAS). Two groups of MetS+RAS were treated 4 weeks earlier with an intrarenal injection of either Lean-EVs or MetS-EVs. MetS+RAS had lower renal volume, renal blood flow, and glomerular filtration rate than MetS pigs. Compared with Lean-EVs, MetS-EVs were less effective in improving renal function and decreasing tubular injury and fibrosis in MetS+RAS. Lean-EVs upregulated TGF-β expression in stenotic kidney and increased regulatory T cells numbers more prominently. Furthermore, markedly upregulated anti-inflammatory M2 macrophages reduced proinflammatory M1 macrophages, and CD8+ T cells were detected in stenotic kidneys treated with Lean-EVs compared with MetS-EVs, and renal vein levels of interleukin-1β were reduced. In vitro, coculture of Lean-EVs with activated T cells led to greater TGF-β-dependent regulatory T cells induction than did MetS-EVs. Therefore, the beneficial effects of mesenchymal stem cells-derived EVs on injured kidneys might be partly mediated by their content of TGF-β signaling components, which permitting increased Treg preponderance. Modulating EV cargo and transforming their functionality might be useful for renal repair.
Keywords: extracellular vesicles; fibrosis; macrophages; mesenchymal stem cells; renal vein.