Description of spatio-temporal couplings from heat-induced compressor grating deformation

Opt Express. 2020 Mar 16;28(6):8257-8265. doi: 10.1364/OE.386112.

Abstract

High average power high-intensity laser systems can suffer from a heat-induced deformation of the final compressor gratings, which introduces wavefront aberrations and spatio-temporal couplings to the pulse. Here, we use a simple numerical description, that was first introduced by Li et al. (Appl. Phys. Express, 10, 102702, 2017 and Optics Express, 26, 8453, 2018), to calculate the resulting degradation of the peak intensity and the 3-dimensional deformation of the laser pulse as a function of average power, and verify the results using experimental data. For a typical 100 TW-class laser we find that non-negligible pulse distortions can occur at an average power as low as 2.7 Watts. An open source implementation of our numerical description is available for researchers to estimate the effects of spatio-temporal couplings for their specific laser configuration.