Worldwide, while Fusarium graminearum is the main causal species of Fusarium head blight (FHB) in small-grain cereals, a diversity of FHB-causing species belonging to different species complexes has been found in most countries. In the U.S., FHB surveys have focused on the Fusarium graminearum species complex (FGSC) and the frequencies of 3-ADON, 15-ADON, and nivalenol (NIV) chemotypes. A large-scale survey was undertaken across the state of North Carolina in 2014 to explore the frequency and distribution of F. graminearum capable of producing NIV, which is not monitored at grain intake points. Symptomatic wheat spikes were sampled from 59 wheat fields in 24 counties located in three agronomic zones typical of several states east of the Appalachian Mountains: Piedmont, Coastal Plain, and Tidewater. Altogether, 2197 isolates were identified to species using DNA sequence-based methods. Surprisingly, although F. graminearum was the majority species detected, species in the Fusarium tricinctum species complex (FTSC) that produce "emerging mycotoxins" were frequent, and even dominant in some fields. The FTSC percentage was 50-100% in four fields, 30-49% in five fields, 20-29% in five fields, and < 20% in the remaining 45 fields. FTSC species were at significantly higher frequency in the Coastal Plain than in the Piedmont or Tidewater (P < .05). Moniliformin concentrations in samples ranged from 0.0 to 38.7 μg g-1. NIV producing isolates were rare statewide (2.2%), and never >12% in a single field, indicating that routine testing for NIV is probably unnecessary. The patchy distribution of FTSC species in wheat crops demonstrated the need to investigate the potential importance of their mycotoxins and the factors that allow them to sometimes outcompete trichothecene producers. An increased sampling intensity of wheat fields led to the unexpected discovery of a minority FHB-causing population.
Keywords: Chemotype; Deoxynivalenol; Fusarium graminearum; Fusarium head blight; Fusarium tricinctum species complex; Gibberella ear rot; Moniliformin; Scab; Small grains.
Copyright © 2020. Published by Elsevier B.V.