Cell-to-cell communication and information exchange is one of the most important events in multiple physiological processes, including multicellular organism development, cellular function regulation, external stress response, homeostasis maintenance and tissue regeneration. New findings support the concept that subcellular component delivery may account for the beneficial effects of mesenchymal stem cell (MSC)-based therapy-mediated protection against acute kidney injury (AKI). Through the secretion of extracellular vesicles (EVs), formation of tunnelling nanotubes (TNTs) and development of cellular fusions, a broad range of subcellular components, including proteins, nucleic acids (mRNA and miRNA) or even organelles can be transferred from MSCs into injured renal cells, significantly promoting cell survival, favouring tissue repair and accelerating renal recovery. In this review, we outline an extensive and detailed description of the regenerative consequences of subcellular component delivery from MSCs into injured renal cells during AKI, by which the potential mechanism underlying MSC-based therapies against AKI can be elucidated.
Keywords: acute kidney injury; mesenchymal stem cell-based therapy; subcellular component delivery.
© 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.