Pseudomonas aeruginosa (PA) is a major cause of healthcare-associated infections. Antipseudomonal carbapenems are among the antimicrobial agents used to treat PA infections, but several mechanisms of resistance, including the production of a carbapenemase (CP), may compromise their clinical efficacy. The objectives of this study were to determine: (i) the dissemination of carbapenem-resistant CP-negative and CP-positive PA isolates; and (ii) the in-vitro activity of ceftolozane-tazobactam (CTT) against carbapenem-susceptible and carbapenem-resistant isolates. Isolates were collected prospectively from January 2016 to April 2017 at 20 German medical laboratories. Each centre was asked to provide 50 consecutive isolates from hospitalized patients. Overall, 985 isolates were collected, of which 34% were obtained from intensive care patients. Seven hundred and thirty-eight (74.9%) isolates were susceptible to both imipenem and meropenem (Subgroup I), and 247 (25.1%) isolates were resistant to carbapenems (Subgroup II): 125 (12.7%) were imipenem-resistant but meropenem-susceptible, 12 (1.2%) were meropenem-resistant but imipenem-susceptible, and 110 (11.2%) were resistant to both carbapenems (Subgroup III). A CP was detected in 28 (2.8%) isolates (predominantly VIM-2). Nine hundred and fifty (96.4%) isolates were CTT-susceptible. Susceptibility to CTT was seen in 99.6% of Subgroup I isolates, 87% of Subgroup II isolates and 74.5% of Subgroup III isolates. Overall, 2.8% of PA produced a CP, while 22.2% were carbapenem-resistant, CP-non-producing isolates. Based on these findings, CTT may be considered for treatment of PA infections, particularly those caused by multi-drug-resistant CP-non-producing isolates.
Keywords: Imipenem; Meropenem; Metallo-β-lactamase; Resistance.
Copyright © 2020 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.